Sumario: | Tablas de mareas son el método escogido generalmente para la predicción del nivel del agua en regiones costeras. Sin embargo, para muchas localidades en la costa del Golfo de México, las tablas de mareas no satisfacen las normas del Servicio Nacional Oceánico de los Estados Unidos (NOS, por sus siglas en inglés). La fuerza del viento ha sido reconocida como la principal variable no incluida. El rendimiento de las tablas de mareas es particularmente pobre en aguas poco profundas. Investigaciones recientes han mosrado que los modelos de redes de neuronas artificiales (ANN, por sus siglas en inglés) que incluyen variables de entrada como niveles previos de agua, previsiones de mareas, velocidad del viento, dirección del viento, predicción del viento, y presión atmosférica, pueden mejorar en gran medida los gráficos de mareas para localizaciones que incluyen mar abierto y aguas profundas. En este artículo, la técnica de modelación de ANN es aplicada a una estación de aguas poco profundas, la estación de Rockport, localizada cerca de Corpus Christi, Texas. El rendimiento del modelo ANN es comparado contra los gráficos de mareas NOS y el modelo de persistencia para los años 1007 a 2001. El rendimiento es medido usando los criterios NOS, que incluyen Frecuencia Central (FC de 15 cm), Máxima Duración de Puntos Atípicos Positivos (MNPO), y Máxima Duración de Puntos Atípicos Necagativos (MDNO). Sobre el período de estudio, el rendimiento de los tres modelos (tabla de mareas, persistencia, ANN) son, respectivamente, CF de 85%, 95.8% y 96.9%, para MDPO es 16, 14 y 5.9 horas, y para MDNO es de 72.8, 0.6 y 0.5 horas.
|