Minería de texto en la Encuesta Nacional de Transparencia 2019

Codificar y analizar preguntas abiertas provenientes de encuestas de opinión suele ser laborioso. La minería de texto ofrece una alternativa para ese tipo de problemática. Se utilizaron los datos de preguntas abiertas provenientes de la Encuesta Nacional de Percepción sobre la Transparencia 2019. Se...

Descripción completa

Detalles Bibliográficos
Autores principales: Centeno-Mora, Oscar, Gónzalez-Évora, Felipe
Formato: Online
Idioma:spa
Publicado: Universidad de Costa Rica, Centro de Investigación en Matemática Pura y Aplicada (CIMPA) 2022
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/46379
Descripción
Sumario:Codificar y analizar preguntas abiertas provenientes de encuestas de opinión suele ser laborioso. La minería de texto ofrece una alternativa para ese tipo de problemática. Se utilizaron los datos de preguntas abiertas provenientes de la Encuesta Nacional de Percepción sobre la Transparencia 2019. Se aplica la minería de texto desde un enfoque descriptivo como predictivo: este último posee un interés predominante al realizar la codificación automática de respuestas o categorías a partir del aprendizaje automático supervisado. Se emplean algoritmos de máquinas de soporte vectorial, clasificador ingenuo de Bayes, bosques aleatorios, XGBoost y vecinos más cercanos. Los resultados del análisis descriptivo permiten apreciar las descripciones, visualizaciones y relaciones en el análisis de las preguntas abiertas. El análisis predictivo reseña que los algoritmos seleccionados con mayor ocurrencia para las preguntas abiertas fueron el clasificador ingenuo de Bayes y los bosques aleatorios, mostrando precisiones de entre 48% y 76%. Se obtuvieron resultados similares en comparación con las categorías que fueron codificadas manualmente. Se aprecian resultados satisfactorios en el análisis integral de las 12 preguntas de la encuesta.