Método heurístico para particionamiento óptimo

Muchos problemas en el análisis de datos requieren del particionamiento no supervisado de un conjunto de datos dentro de clases o conglomerados no vacíos que sean bien separados entre ellos y lo más homogéneos entre sí. Un particionamiento ideal es cuando se puede asignar cada elemento del conjunto...

Descripción completa

Detalles Bibliográficos
Autores principales: de-los-Cobos-Silva, Sergio G., Trejos Zelaya, Javier, Pérez Salvador, Blanca Rosa, Gutiérrez Andrade, Miguel Ángel
Formato: Online
Idioma:spa
Publicado: Universidad de Costa Rica, Centro de Investigación en Matemática Pura y Aplicada (CIMPA) 2003
Acceso en línea:https://revistas.ucr.ac.cr/index.php/matematica/article/view/221
Descripción
Sumario:Muchos problemas en el análisis de datos requieren del particionamiento no supervisado de un conjunto de datos dentro de clases o conglomerados no vacíos que sean bien separados entre ellos y lo más homogéneos entre sí. Un particionamiento ideal es cuando se puede asignar cada elemento del conjunto a una clase sin que exista ambigüedades. Este trabajo consta de dos partes principales; primero se presentan diferentes métodos y heurísticas para encontrar la cantidad de clases en que se debe particionar un conjunto de manera óptima; posteriormente se propone una novedosa heurísticas y se realizan algunas comparaciones para observar sus ventajas considerando conjuntos muy conocidos y utilizados que están previamente clasificados presentándose al final algunos resultados y conclusiones.