Diseño de un 1D-CNN para clasificar señales EMG de superficie (SEMG)
Amputar el antebrazo, el dedo o la mano es el mayor problema para el sujeto discapacitado. Por lo tanto, Prosthetic desempeña un papel importante para que los amputados modifiquen la capacidad y movilidad de sus actividades sistemáticas. El uso de señales EMG de discriminación del movimiento de mano...
Autores principales: | , |
---|---|
Formato: | Online |
Idioma: | eng |
Publicado: |
Universidad Nacional de Ingeniería (UNI) en Managua
2023
|
Acceso en línea: | https://www.camjol.info/index.php/NEXO/article/view/17458 |
Sumario: | Amputar el antebrazo, el dedo o la mano es el mayor problema para el sujeto discapacitado. Por lo tanto, Prosthetic desempeña un papel importante para que los amputados modifiquen la capacidad y movilidad de sus actividades sistemáticas. El uso de señales EMG de discriminación del movimiento de manos y dedos aumenta continuamente para numerosos gestos de manos y dedos. El principal problema al diseñar una prótesis de mano es la clasificación de las señales EMG. Los algoritmos de aprendizaje automático (ML) presentan una solución a este problema al proporcionar una forma de clasificar las señales EMG con un esquema simple y menos costoso. Este estudio presenta más de un experimento en dos conjuntos de datos para clasificar dedos individuales (IF) con muñeca y victoria en función de un conjunto de datos normativos de señales EMG y aprendizaje profundo DL. Estos experimentos muestran que el rendimiento general (precisión promedio) del método propuesto es del 98,83% y la tasa general de clasificación de errores (tasa de error) es del 1,17%. |
---|