Enfoques de aprendizaje profundo para la clasificación del reconocimiento de emociones basándose en expresiones faciales

El reconocimiento automático de emociones (AEE) juega un papel crucial en numerosas industrias que dependen de comprender las respuestas emocionales humanas, como la publicidad, la tecnología y la interacción humano-robot, especialmente dentro del campo de la Tecnología de la Información (TI). Sin e...

Descripción completa

Detalles Bibliográficos
Autores principales: Hameed Qutub, Ahmed Adnan, Atay, Yılmaz
Formato: Online
Idioma:eng
Publicado: Universidad Nacional de Ingeniería (UNI) en Managua 2023
Acceso en línea:https://www.camjol.info/index.php/NEXO/article/view/17181
Descripción
Sumario:El reconocimiento automático de emociones (AEE) juega un papel crucial en numerosas industrias que dependen de comprender las respuestas emocionales humanas, como la publicidad, la tecnología y la interacción humano-robot, especialmente dentro del campo de la Tecnología de la Información (TI). Sin embargo, los sistemas actuales a menudo no logran comprender de manera integral las emociones de un individuo, ya que las investigaciones previas se han centrado principalmente en evaluar las expresiones faciales y clasificarlas en siete emociones primarias, incluida la neutralidad. En este estudio, presentamos varios modelos de Redes Neuronales Convolucionales Profundas (CNN) diseñados específicamente para la tarea de reconocimiento facial de emociones, utilizando los conjuntos de datos FER2013 y RAF. El modelo base de CNN se establece mediante un método de prueba y error, y sus resultados se comparan con técnicas de aprendizaje profundo más complejas, que incluyen los modelos ResNet18, VGGNet16, VGGNet19 y EfficientNet-B0. Entre estos modelos, el modelo VGGNet19 logró los mejores resultados con una precisión de prueba del 71.02% en el conjunto de datos FER2013. En comparación, el modelo ResNet18 superó a todos los demás modelos con una precisión de prueba del 86.02% en el conjunto de datos RAF-DB. Estos resultados destacan el potencial para avanzar en el reconocimiento automático de emociones a través de técnicas complejas de aprendizaje profundo.