Método de algoritmo de clúster para el análisis del perfil de investigadores científicos

El aumento de la producción científica convierte en un desafío la tarea de identificar patrones y rasgos particulares que caractericen a los investigadores. Lograr establecer niveles de compatibilidad y similaridad entre actores en un contexto de investigación científica a partir de sus perfiles req...

Descripción completa

Detalles Bibliográficos
Autor principal: Rodríguez Bárcenas, Gustavo
Formato: Online
Idioma:spa
Publicado: Universidad de Costa Rica 2022
Acceso en línea:https://revistas.ucr.ac.cr/index.php/eciencias/article/view/50456
Descripción
Sumario:El aumento de la producción científica convierte en un desafío la tarea de identificar patrones y rasgos particulares que caractericen a los investigadores. Lograr establecer niveles de compatibilidad y similaridad entre actores en un contexto de investigación científica a partir de sus perfiles requiere de un proceso rápido y apropiado. El objetivo de este artículo es evaluar los niveles de similaridad, distancia euclidiana y compatibilidad entre vectores de investigadores, a partir de algoritmos de agrupamiento, escalamiento multidimensional, principios del modelo espacio-vectorial y atributos de sus perfiles científicos, considerando las terminologías que se abordan en su producción científica. Se utilizaron métodos teóricos y empíricos, incluyendo técnicas y herramientas de minería de texto. La aplicación del procedimiento en el Centro de Estudios de la Energía y Tecnología Avanzada de Cuba (CEETAM) y la Universidad Técnica de Cotopaxi (UTC) en Ecuador, evidenció su efectividad. Como resultado se pudo identificar los profesionales con mayores niveles de coincidencia en áreas a fines y líneas de investigación, lo que propicia el establecimiento de Comunidades Colectivas de Conocimientos; se pudo demostrar que los métodos empleados pueden ser integrados a las TIC, resultando en la obtención de relaciones perceptuales entre los investigadores y expresando los grupos que se forman a partir de conglomerados de observaciones en cada subcategoría y dominios de conocimientos de los dos casos de estudio analizados.