| Summary: | El dolor de espalda es un dolor común que afecta principalmente a personas de todas las edades y da como resultado diferentes tipos de trastornos como obesidad, deslizamiento de disco, escoliosis y osteoporosis, etc. El diagnóstico del trastorno de dolor de espalda es difícil debido a la extensión del trastorno y factores biomecánicos exactos. Este trabajo presenta un método de aprendizaje automático para diagnosticar estos trastornos mediante el sistema de monitorización de la marcha. Se trata de máquinas de vectores de apoyo que clasifican entre lumbalgia y normal, sobre la base de 3 patrones de marcha que son la presión integrada, la dirección de progresión y CISP-ML. El método propuesto utiliza 13 características diferentes, como la desviación media y estándar, etc. registrado de 62 sujetos (30 normales y 32 con dolor lumbar). Las características por sí solas dieron como resultado una mayor precisión de clasificación de dejar uno fuera (LOOCV) del 92%. El método propuesto se puede utilizar para diagnosticar automáticamente el dolor lumbar y sus efectos sobre la marcha en la persona. Este modelo se puede transferir a pequeños dispositivos informáticos para el autodiagnóstico del dolor lumbar en un área remota.
|