Análisis de mixturas gaussianas de parámetros meteorológicos básicos: Temperatura y humedad relativa

Se aplicó el modelado por mixturas gaussianas para describir la distribución anual de dos variables meteorológicas importantes, temperatura y humedad relativa, dentro del Valle Central de Costa Rica desde el 2010 hasta el 2017. Se utilizó un número fijo de componentes gaussianas para ajustar los dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdalah-Hernández, Mariela, Rodríguez-Yáñez, Javier, Alvarado-González, Daniel
Formato: Online
Idioma:eng
Publicado: Editorial Tecnológica de Costa Rica (entidad editora) 2020
Acceso en línea:https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/5068
Descripción
Sumario:Se aplicó el modelado por mixturas gaussianas para describir la distribución anual de dos variables meteorológicas importantes, temperatura y humedad relativa, dentro del Valle Central de Costa Rica desde el 2010 hasta el 2017. Se utilizó un número fijo de componentes gaussianas para ajustar los datos a una curva de mixtura general que representara el comportamiento durante todo el año, esto se realizó a través de funciones específicas de las bibliotecas Scikit-learn y SciPy del lenguaje Python. Al modelar los datos de temperatura se obtuvieron valores bajos del error de aproximación y se observó una relación entre su distribución y la variabilidad horaria, estableciendo altas temperaturas alrededor del mediodía. Para la humedad relativa, el modelo de mixturas gaussianas presentó problemas en el ajuste de valores mayores al 90 %, como resultado del límite de saturación de esta variable en el 100 %. La relación respecto al tiempo no fue claramente determinada debido a la cantidad de componentes de la mixtura usadas para modelar la humedad relativa, pero se apreció una tendencia de valores bajos entre el final de la mañana e inicios de la tarde. La minimización iterativa del error fue considerada como una aproximación futura para alcanzar un mejor ajuste con mixturas gaussianas para estas y otras variables meteorológicas.